Kasetsart University TREC-9 Experiments

P. Narasetsathaporn, A. Rungsawang
{g4365020,fenganr }@ku.ac.th
Massive Information & Knowledge Engineering
Department of Computer Engineering
Faculty of Engineering
Kasetsart University, Bangkok, Thailand.

Abstract

We add pivoted unique normalization weighting scheme to SMART
and use it to run the final experiments. Since SMART produces an in-
verted file which is larger than 2G limitation on our x86 based Linux
machine, we have then to divide small web track test set into several sub-
collections, index and retrieve, and merge all scores to obtain the final
result.

1 Introduction

In our TREC-8 experiments last year, we proposed to mine good candi-
date terms from the document collection, using “Apriori algorithm” [1],
and then use that terms to enhance the original query [3]. We then used
the new expanded query to retrieve relevant documents in the collec-
tion. From those experiments, we had found that the proposed technique
worked well with the FT (Financial Time) collection using some weighting
pairs, such as Inc.ntc or Inc.atc, and we got till 19% improvement.

In the TREC-9 experiments this year, we try to use the same tech-
nique with the whole small web track documents, but confront with many
technical obstacles. Firstly, we have spent very much time to write a ro-
bust parser to parse messy data in small web track documents. Secondly,
the number of different terms, after removing stopwords and stemming,
is so numurous that the Apriori algorithm we use to mine good candi-
date terms, as well as our own DSIR text retrieval algorithm, have hardly
come through in time we have left, though using the most powerful x86 PC
based machine (equipped with 512M of RAM) we have in our department.

We then decide to modify the Cornell’s SMART version 11.0 so that
it can run smoothly on our Linux machine, and add the notable pivoted
unique normalization weighting scheme [4] to it. However, another intrin-
sic operating system problem arises. We cannot index the whole small
web track documents in one-shot since SMART will generate an inverted-
file image that is larger than the 2G limitation of the x86 based Linux
machine. Therefore, we have to split the small web track collection into

several sub-collections, index and test those sub-collections with SMART,
merge all subsequent results to get the final top-1000 scores.

The rest of our report gives more detail about what we do during
TREC-9 period. Sections 2 describes new weighting scheme that we add
to the original SMART version 11.0. Sections 3 gives more detail about
the merging algorithm we use to combine the whole final scores from
several runs. Sections 4 provides the final results we obtain, and section
5 concludes this report.

2 Adding New Weight to SMART

Since we found that retrieval results recieved from the classical weighting
schemes provided by the original SMART distribution are not as good as
we expect, and unfortunately there is no patch for the new well-known
weighting schemes, we then decide to mess up some more codes into the
original SMART. We have followed the pivot document length normaliza-
tion weighting scheme introduced by Singhal et al. [4]. This normalization
scheme is based upon both normalizing the t; (term-frequency) factor by
the average ¢ in the document vector, and the overall vector length by
a pivot and a slope factor dependent on the number of unique terms in
that document. Based on the underlying ¢; factor (which we call the L
factor in the SMART tripple weighting notation), and the pivoted unique
normalization (which we call the u normalization), we obtain the final
weighting scheme, called Lnu weighting in SMART, in the form of:

1+log(ty)
1+log(average ty)
(1)

(1.0 — slope) * pivot + slope * #of unique terms

which the #of unique terms is the amount of term of which ¢ is equal to
1, and pivot is the average number of unique terms.

To obtain this weight, we modify the SMART version 11.0 in src/lib-
convert by adding the function tfwt_triple (L) in weights_tf.c and norm-
wt_unique (u) in weights_norm.c, while during experiments the pivot and
slope are read from the spec file. We also add the L and u to tell SMART
about this new weight in src/libproc/proc_convert.c

After adding the new weight to SMART, we verify it by running some
retrieval experiments. We choose the FR and FBIS, and the topics 401-
450 as our test sets. We obtain the results as illustrated in the Table 1 as
follows. Results from this test make us quite certain that we do add the
correct weight to the old orginal SMART.

Collection | # of relevance | 11pt avg precision | Relevant retrieved

Incltc | Inuwltu | Incltc | Lnultu

FBIS 1667 0.2001 0.2732 1144 1106
FR 206 0.1814 0.2713 170 170

Table 1: Testing results of our modified SMART.

3 Merging Results from Sub-collections

Since the total number of documents in small web track collection, 1,692,096
documents, is quite large for our x86 based Linux machine, the inverted
file index produced by SMART becomes messy when it breaks the 2G bar-
rier. We then have to divide the whole collection into several ones, index
and retrieve the top-ranked documents, and merge the whole together
to get the final ranking scores. There exist several merging algorithms
mentioned in the literatures [2, 5]. We investigate and implement four of
them, i.e. interleaved merge, raw score merge, normalized score merge,
and weighted score merge, and test them using the FR collection. Re-
sults from this test shows that the weighted score appraoch gives the best
merging results. The weight w, below, is the one we use to combine the
whole final ranking scores from several small web track sub-collections in
our TREC-9 experiments.

sS—3§

w=1+|C|* ES ()

where |C| is the number of sub-collections, s is the collection’s score, and
§ is the mean of the collection scores. With this approach, each document
is ranked based upon the product of its score and the weight w for its
collection [2].

4 Experiments and Results

We first parse all html tags, images, all messy data, and the others, out of
the small web track collection. We use every words found in the small web
track topics as queries. From several experiments we have performed till
the deadline of this final report, we obtain the best final scores when the
original small web track collection has been divided into 7 sub-collections,
in a round-robin fashion, as concluded in Table 2 as follows.

| Sub-collection | Directory | Doc-number |

1 WTX001-WTX015 1-251745

2 WTX016-WTX030 251746-485635

3 WTX031-WTX045 485636-730835

4 WTX046-WTX060 730836-976633

5 WTX061-WTX075 | 976634-1233895
6 WTX076-WTX090 | 1233896-1474263
7 WTX091-WTX104 | 1474264-1692096

Table 2: Small web track sub-collections.

We index all the sub-collections seperately, using our own modified
SMART running on a x86 based Linux machine, and try with several
weighting schemes. We found that the weight Lnu.ltu combination gives
the best scores, when pivot and slope parameters in Equation 1 have been
set as shown in the Table 3 as follows.

| Sub-collection | Pivot | Slope |

1 84.53 | 0.15
2 90.86 0.1
3 83.44 | 0.05
4 81.05 | 0.05
5 80.54 0.1
6 82.98 | 0.25
7 84.15 0.2

Table 3: Pivot and slope parameters.

Using weighted score merging approach, the final result we have is
concluded in the Table 4 below. Note that we also give the result obtained
from Inc.ltc weight for reference.

| Weight | Avg.Precision | Rel.Retrieved | P.@bdoc | P.@100doc |

Inc.ltc 0.0525 803 0.1080 0.0508
Lnu.ltu 0.1943 1122 0.3360 0.1058

Table 4: KU TREC-9 final small web track results.

5 Conclusion

In our TREC-9 experiment this year, we have not provided any valuable
finding to the web track community, but just participate in spirit. Till
the last day of this final report deadline, we do hardly come through to
get some results. We have spent a lot of time to code a robust parser
to extract free text from small web track documents. We lost much time
to alter the Apriori algorithm to run with big small web track data, but
it has never been converted to give any results. We also face with the
intrisic Linux operating system problem when the file size is larger than
2G barrier on the x86 machine.

Since we do not succeed to let the Apriori algorithm convert on the
whole small web track data, our claim last year about the query enhance-
ment technique [3] is still not verified. We turn to use our own modified
version of SMART to run the experiments. We add the new weight, i.e.
pivoted unique normalization, in SMART. Since the problem of 2G file
size limitation in our Linux based machine still exists, we then divide the
small web track test set into several sub-collections, index and retrieve
relevant documents seperately, and use weighted score merging technique
to combine the final top-1000 scores.

Ackknowledgement

We would like to thank our MIKE staffs, especailly Hong, Wit, Tew, for
their programming support and working spirit. We also thank to Ink who
worked so hard with Apriori algorithm last year.

References

[1]

2]

(3]

[4]

R. Agrawal and R. Srikant. Fast Algorithms for Mining Association
Rules. In Proceedings of the 208" VLDB Conference, Staiago, Chile,
1994.

J.P. Callan, Z. Lu, and W.B. Croft. Searching Distributed Collections
with Inference Networks. In Proccedings of the 18* ACM-SIGIR Con-
ference. ACM Press, 1995.

A. Rungsawang, A. Tangpong, P. Laohawee, and T. Khampachua.
Novel Query Expansion Technique using Apriori Algorithm. In
E. Voorhees and D. Harman, editors, Proceedings of the 8" Text RE-
trieval Conference. NIST Special Publication 500-246, 1999.

A. Singhal, C. Buckley, and M. Mitra. Pivoted Document Length
Normalization. In Proceedings of the 19** ACM-SIGIR Conference.
ACM Press, 1996.

E. Vorhees, N.K. Gupta, and B. Johnson-Laird. The Collection Fusion
Problem. In D. Harman, editor, Proceedings of the 3" Tezt REtrieval
Conference. NIST Special Publication 500-225, 1995.

